Método de Mínimos Cuadrados
El procedimiento mas objetivo para ajustar una recta a un conjunto de datos presentados en
un diagrama de dispersión se conoce como "el método de los mínimos cuadrados". La recta
resultante presenta dos características importantes:
1. Es nula la suma de las desviaciones verticales de los puntos a partir de la recta de ajuste
2. Es mínima la suma de los cuadrados de dichas desviaciones. Ninguna otra recta daría
una suma menor de las desviaciones elevadas al cuadrado ∑ (Yー - Y)² → 0
(mínima).
El procedimiento consiste entonces en minimizar los residuos al cuadrado Ci²
La obtención de los valores de a y b que minimizan esta función es un problema que se puede resolver recurriendo a la derivación parcial de la función en términos de a y b: llamemos G a la función que se va a minimizar:

Tomemos las derivadas parciales de G respecto de a y b que son las incógnitas y las igualamos a cero; de esta forma se obtienen dos ecuaciones llamadas ecuaciones normales del modelo que pueden ser resueltas por cualquier método ya sea igualación o matrices para obtener los valores de a y b.
Derivamos parcialmente la ecuación respecto de a




Primera ecuación normal
Derivamos parcialmente la ecuación respecto de b





Segunda ecuación normal
Los valores de a y b se obtienen resolviendo el sistema de ecuaciones resultante.
un diagrama de dispersión se conoce como "el método de los mínimos cuadrados". La recta
resultante presenta dos características importantes:
1. Es nula la suma de las desviaciones verticales de los puntos a partir de la recta de ajuste
∑ (Yー - Y) = 0.
2. Es mínima la suma de los cuadrados de dichas desviaciones. Ninguna otra recta daría
una suma menor de las desviaciones elevadas al cuadrado ∑ (Yー - Y)² → 0
(mínima).
El procedimiento consiste entonces en minimizar los residuos al cuadrado Ci²
Re emplazando |
La obtención de los valores de a y b que minimizan esta función es un problema que se puede resolver recurriendo a la derivación parcial de la función en términos de a y b: llamemos G a la función que se va a minimizar:
Tomemos las derivadas parciales de G respecto de a y b que son las incógnitas y las igualamos a cero; de esta forma se obtienen dos ecuaciones llamadas ecuaciones normales del modelo que pueden ser resueltas por cualquier método ya sea igualación o matrices para obtener los valores de a y b.
Derivamos parcialmente la ecuación respecto de a
Derivamos parcialmente la ecuación respecto de b
Los valores de a y b se obtienen resolviendo el sistema de ecuaciones resultante.
0 comentarios: