Método de Bisección
Si f es una función continua sobre el intervalo [a,b] y si f(a) f(b)<0, entonces f debe tener un cero en (a,b). Dado que f(a)f(b)<0, la función cambia de signo en el intervalo [a,b] y por lo tanto tiene por lo menos un cero en el intervalo.
Esta es una consecuencia del teorema del valor intermedio para funciones continuas, que establece que si f es continua en [a,b] y si k es un número entre f(a) y f(b) , entonces existe por lo menos un c
(a,b) tal que f(c)=k.(para el caso en que f(a)f(b)<0 se escoge k=0, luego f(c)=0, c
(a,b)).
El método de bisección consiste en dividir el intervalo en 2 subintervalos de igual magnitud, reteniendo el subintervalo en donde f cambia de signo, para conservar al menos una raíz o cero, y repetir el proceso varias veces.
Por ejemplo, suponga que f tiene un cero en el intervalo [a,b]. Primero se calcula el punto medio del intervalo
; después se averigua sí f(a)f(c)<0. Si lo es, entonces f tiene un cero en [a,c].
A continuación se renombra a c como b y se comienza una vez más con el nuevo intervalo [a,b], cuya longitud es igual a la mitad del intervalo original.
Si f(a)f(c)>0 , entonces f(c)f(b)<0 y en este caso se renombra a c como a.
En ambos casos se ha generado un nuevo intervalo que contiene un cero de f, y el proceso puede repetirse.
0 comentarios: